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Abstract
This paper is concerned with the coupled supercritical nonlinear Schrödinger
equations which have applications in many physical problems, especially in
nonlinear optics. Two types of new invariant evolution flows are established. A
sharp threshold of blow-up and global existence of solutions for the equations
is derived. It is shown that the main result obtained includes parts of those
presented by Fanelli and Montefusco (2007 J. Phys. A: Math. Theor. 40
14139–50).
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Mathematics Subject Classification: 35B10, 35Q35

1. Introduction

In this paper we consider the coupled supercritical nonlinear Schrödinger equations{
iφt + �φ + (|φ|2p + β|φ|p−1|ψ |p+1)φ = 0,

iψt + �ψ + (|ψ |2p + β|ψ |p−1|φ|p+1)ψ = 0,
(1.1)

with initial data

φ(0, x) = φ0(x), ψ(0, x) = ψ0(x), (1.2)

where φ,ψ : R × Rn → C, φ0, ψ0 : Rn → C, n is the space dimension, i = √−1,� is the
Laplace operator on Rn and β is a real positive constant. 0 < p < An in which An = ∞ if
n = 1, 2 and An = 2

(n−2)
if n � 3.

The system (1.1) has several applications in physics, especially in nonlinear optics (see
[2, 7, 10, 15, 22]). One of the most important applications is as a mathematical model for

1751-8113/10/165205+11$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/43/16/165205
mailto:lixiaoguang1235@msn.com
mailto:Y.Wu@curtin.edu.au
mailto:laishaoy@swufe.edu.cn
http://stacks.iop.org/JPhysA/43/165205


J. Phys. A: Math. Theor. 43 (2010) 165205 X Li et al

propagation of polarized laser beams in a birefringer Kerr medium in nonlinear optics [7],
and for such a problem, φ and ψ represent respectively the components of the slowly varying
envelope of the electrical field, x denotes the orthogonal variables and t is the distance in the
direction of propagation. If n = 1, the system (1.1) corresponds to the propagation in a planar
geometry. The case n = 2 is the propagation in a bulk medium and the case n = 3 is the
propagation of pulses in a bulk medium with time dispersion.

The focusing nonlinear terms in (1.1) describe the dependence of the refraction index of
the material on the electric field intensity and the birefringence effects. The parameter β > 0
is the birefringence intensity and describes the coupling between the two components of the
electric-field envelope. The case p = 1 (i.e. cubic nonlinearities in (1.1)) is known as Kerr
nonlinearity in the physical literature.

For the Cauchy problem (1.1) and (1.2), the local well-posedness described by the
following proposition was established in the energy space H 1(Rn) × H 1(Rn) (see [3] or
[17]).

Proposition 1 (Local existence). Assume that 0 < p < An. Then for any (φ0, ψ0) ∈ H 1(Rn)×
H 1(Rn) there exist T > 0 and a unique solution (φ,ψ) ∈ C([0, T );H 1(Rn)×H 1(Rn)) such
that either T = ∞ or T < ∞ and limt→T

∫
Rn(|∇φ|2 + |∇ψ |2) = ∞. Moreover, the system

(1.1) admits the mass and the energy conservation in the space H 1(Rn) × H 1(Rn). Namely,
mass (L2 norm)

M[φ(t), ψ(t)] := ‖φ‖2
2 + ‖ψ‖2

2 = M[φ0, ψ0] (1.3)

and energy

E[φ,ψ] := 1

2

(‖∇φ(t)‖2
2 + ‖∇ψ(t)‖2

2

) − 1

2p + 2

(‖φ‖2p+2
2p+2 + 2β‖φψ‖p+1

p+1 + ‖ψ‖2p+2
2p+2

)
= E[φ0, ψ0]. (1.4)

Here and hereafter, for simplicity, we write ‖·‖p for the norm in the space Lp(Rn).
Recently, much attention was paid to study the blow-up and global existence of the Cauchy

problem (1.1) and (1.2) (see, for example, [6, 7, 13, 15]), and the following results have been
established.

(i) When 0 < p < 2
n

, the solutions of the Cauchy problem (1.1) and (1.2) exist globally in
time (see [7]).

(ii) When p � 2
n

, the solutions of the Cauchy problem (1.1) and (1.2) blow up in a finite time
for some initial data (E[φ0, ψ0] < 0), especially for a class of sufficiently large data (see
[6, 7, 13, 15]). On the other hand, the solutions of the Cauchy problem (1.1) and (1.2)
globally exist for other initial data, especially for a class of sufficiently small data (see [3,
7, 13]).

Obviously p = 2
n

is a critical value and called the critical nonlinear power exponent,
while p > 2

n
is called the supercritical nonlinear power exponent. A natural question arises

for p � 2
n

, that is, whether a sharp threshold can be found for the initial data which separate
blow-up and global existence. For the single Schrödinger equation, this problem has been
extensively studied (see [4, 5, 8, 9, 19–21]) and it is suggested that the sharp threshold of blow-
up and global existence is related to the solution of a corresponding stationary equation. For the
system (1.1), various attempts have also been made to study the blow-up threshold. To study
the blow-up threshold, the following stationary system associated with (1.1) is considered:⎧⎪⎨

⎪⎩
�Q − (2 − n)p + 2

2
Q + (|Q|2p + β|Q|p−1|R|p+1)Q = 0,

�R − (2 − n)p + 2

2
R + (|R|2p + β|R|p−1|Q|p+1)R = 0.

(1.5)

2
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We note that (eiωtQ(x), eiωtR(x)) with ω = (2−n)p+2
2 is a solitary wave solution of the

system (1.1). For the elliptic system of this kind, many authors have studied the existence
of positive solutions (see, for example, [1, 12, 14, 16]). Maia, Montefusco and Pellacci [14]
obtained the existence of some qualitative properties of the ground-state solutions. Using
the existence of the ground-state solutions and an argument similar to [19], Fanelli and
Montefusco [7] established the sharp Gagliardo–Nirenberg inequality. With this inequality
the authors further derived the blow-up threshold of the system (1.1) with p = 2

n
(critical case)

in terms of the ground state. More specifically, Fanelli and Montefusco [7] proved that if
‖φ0‖2

2 + ‖ψ0‖2
2 < ‖Q‖2

2 + ‖R‖2
2, the solution of the Cauchy problem (1.1) and (1.2) exists for

all time. Moreover, they constructed the blow-up solution with ‖φ0‖2
2 +‖ψ0‖2

2 = ‖Q‖2
2 +‖R‖2

2.
For the critical and supercritical case p � 2

n
, Ma and Zhao [13] established a sharp

threshold of blow-up and global existence in a subset of the energy space H 1(Rn) × H 1(Rn)

by using the cross-constrained variational argument. However, it is not exactly known how
large the subset is. The essential difficulty is that their results are not explicit and cannot be
precisely computed.

In this paper, we consider the critical and supercritical case p � 2
n

of the Cauchy problem
(1.1) and (1.2). By improving the arguments of Fanelli and Montefusco [7] and Ma and Zhao
[13] and further exploiting the Hamiltonian invariants, applying the sharp Gagliardo–Nirenberg
inequality, we get a new blow-up threshold in terms of the ground state. In comparison with the
results in [7] and [13], our results are explicit and can be precisely computed. In addition, our
main result is more general and includes parts of those presented by Fanelli and Montefusco
[7] as a special case.

The rest of the paper is organized as follows. In section 2, we summarize the variational
characterization of the ground state. In section 3, we recall the Gagliardo–Nirrenberg
inequality and define several constants which are fundamental in proofs of theorems 1
and 2. Section 4 deals with the invariant set. Section 5 is devoted to the study of the
blow-up threshold, and finally section 6 states some concluding remarks.

2. Variational characterization of the ground state

In this section, we consider the following system:{
a�u − bu + c(|u|2p + β|u|p−1|v|p+1)u = 0,

a�v − bv + c(|v|2p + β|v|p−1|u|p+1)v = 0,
(2.1)

with a, b, c > 0 and a related minimization problem

α := inf
u,v∈H 1(Rn)

Jn,p,β(u, v), (2.2)

where

Jn,p,β(u, v) =
(‖∇u‖2

2 + ‖∇v‖2
2

)pn/2(‖u‖2
2 + ‖v‖2

2

)p+1−pn/2

‖u‖2p+2
2p+2 + 2β‖uv‖p+1

p+1 + ‖v‖2p+2
2p+2

, u, v ∈ H 1(Rn).

For the system (2.1), many authors have studied the existence of positive solutions (see
[1, 12, 14, 16]). Particularly, Fanelli and Montefusco [7] obtained the existence result and
some qualitative properties of the ground-state solutions for the system (2.1).

Definition 1. Let X be the set of the solutions of (2.1), namely

X := {(u, v) ∈ H 1(Rn) × H 1(Rn), (u, v) 	= (0, 0), (u, v) solves system (2.1)},
3
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and let G be the set of the ground states of (2.1), that is,

G := {(U, V ) ∈ X ; I [U,V ] � I [u, v],∀(u, v) ∈ X },
where

I [u, v] = In,p,β [u, v] = a

2

(‖∇u‖2
2 + ‖∇v‖2

2

)
+

b

2

(‖u‖2
2 + ‖v‖2

2

)
− c

2p + 2

(‖u‖2p+2
2p+2 + 2β‖uv‖p+1

p+1 + ‖v‖2p+2
2p+2

)
.

Various results on the properties of the ground state have been obtained [7] and [14]. In
the following proposition, we summarize the vital characteristics of the ground state, including
some known results and a new result.

Proposition 2. Let 0 < p < An and β > 0; then we have

(i) G 	= ∅.
(ii) There exists (U, V ) ∈ G such that U 	= 0 and V 	= 0 if and only if β > 2p − 1.

(iii) Jn,p,β(U, V ) = α for any (U, V ) ∈ G.
(iv) ‖U‖2

2 + ‖V ‖2
2 � ‖u‖2

2 + ‖v‖2
2, for any (u, v) ∈ X .

Proof. Properties (i) and (ii) were established in [14]. Property (iii) was derived in [7].
Multiplying (2.1) by (u, v) and integrating by part in Rn, we obtain{

a‖∇u‖2
2 + b‖u‖2

2 = c
(‖u‖2p+2

2p+2 + β‖uv‖p+1
p+1

)
,

a‖∇v‖2
2 + b‖v‖2

2 = c
(‖v‖2p+2

2p+2 + β‖uv‖p+1
p+1

)
,

(2.3)

which results in

a
(‖∇u‖2

2 + ‖∇v‖2
2

)
+ b

(‖u‖2
2 + ‖v‖2

2

) = c
(‖u‖2p+2

2p+2 + 2β‖uv‖p+1
p+1 + ‖v‖2p+2

2p+2

)
. (2.4)

Moreover, the Pohozaev identity reads

n − 2

2
a
(‖∇u‖2

2 + ‖∇v‖2
2

)
+

n

2
b
(‖u‖2

2 + ‖v‖2
2

) = nc

2p + 2

(‖u‖2p+2
2p+2 + 2β‖uv‖p+1

p+1 + ‖v‖2p+2
2p+2

)
.

(2.5)

It follows from the definition of the ground state, (2.4) and (2.5), that (iv) holds. �

3. Gagliardo–Nirenberg inequality

Let (Q∗, R∗) be a ground-state solution of the system (2.1) with a = pn

2 , b = (2−n)p+2
2 and

c = 1, namely ⎧⎪⎨
⎪⎩

pn

2
�Q∗ − (2 − n)p + 2

2
Q∗ + (|Q∗|2p + β|Q∗|p−1|R∗|p+1)Q∗ = 0,

pn

2
�R∗ − (2 − n)p + 2

2
R∗ + (|R∗|2p + β|R∗|p−1|Q∗|p+1)R∗ = 0.

(3.1)

Equations(2.4) and (2.5) become respectively

pn

2

(‖∇Q∗‖2
2 + ‖∇R∗‖2

2

)
+

(2 − n)p + 2

2

(‖Q∗‖2
2 + ‖R∗‖2

2

)
= ‖Q∗‖2p+2

2p+2 + 2β‖Q∗R∗‖p+1
p+1 + ‖R∗‖2p+2

2p+2, (3.2)

4
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n − 2

2

pn

2

(‖∇Q∗‖2
2 + ‖∇R∗‖2

2

)
+

n

2

(2 − n)p + 2

2

(‖Q∗‖2
2 + ‖R∗‖2

2

)
= n

2p + 2

(‖Q∗‖2p+2
2p+2 + 2β‖Q∗R∗‖p+1

p+1 + ‖R∗‖2p+2
2p+2

)
. (3.3)

Putting (3.2) and (3.3) together yields

‖∇Q∗‖2
2 + ‖∇R∗‖2

2 = ‖Q∗‖2
2 + ‖R∗‖2

2. (3.4)

Substituting (3.4) into (3.3), we get

‖Q∗‖2p+2
2p+2 + 2β‖Q∗R∗‖p+1

p+1 + ‖R∗‖2p+2
2p+2 = (p + 1)

(‖Q∗‖2
2 + ‖R∗‖2

2

)
. (3.5)

According to part (iii) of proposition 2, we note that the minimum of (2.2) is obtained by
(Q∗, R∗). From (2.2), (3.4) and (3.5), we have

α =
(‖Q∗‖2

2 + ‖R∗‖2
2

)p

p + 1
.

Based on the above results and using the Gagliardo–Nirenberg inequality in [7], we obtain the
following lemma.

Lemma 1 (Fanelli and Montefusco [7]). For (φ,ψ) ∈ H 1(Rn) × H 1(Rn), one has

‖φ‖2p+2
2p+2 + 2β‖φψ‖p+1

p+1 + ‖ψ‖2p+2
2p+2 � Cn,p,β

(‖φ‖2
2 + ‖ψ‖2

2

)p+1− np

2
(‖  φ‖2

2 + ‖  ψ‖2
2

) pn

2

(3.6)

with

Cn,p,β = 1

α
= p + 1(‖Q∗‖2

2 + ‖R∗‖2
2

)p .

Set

Q(x) = Q∗(λx), R(x) = R∗(λx)

with λ =
√

pn

2 ; then (Q(x), R(x)) satisfies (1.5). Now, we define some constants and

functionals that will take important roles in the subsequent sections.

Definition 2. sc := n
2 − 1

p
, σp,n,β := (

2
pn

) 1
2p

√
‖Q∗‖2

2 + ‖R∗‖2
2,

∧[φ,ψ] := Esc [φ,ψ]M1−sc [φ,ψ],

V[φ,ψ] := (‖∇φ‖2
2 + ‖∇ψ‖2

2

) sc
2
(‖φ‖2

2 + ‖ψ‖2
2

) 1−sc
2 .

Lemma 2. The following equalities hold:

∧ [Q,R] ≡
( sc

n

)sc

(σp,n,β)2, (3.7)

V[Q,R] ≡ σp,n,β (3.8)

and

Cn,p,β = p + 1(
np

2

)
V2p[Q,R]

. (3.9)

5
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Proof. In fact, we have

∧[Q,R] = Esc [Q,R]M(1−sc)[Q,R]

=
(

λ2

2
− 1

2

)sc

α−n
(‖Q∗‖2

2 + ‖R∗‖2
2

)

=
(

pn − 2

4

)sc
(

2

pn

) n
2 (‖Q∗‖2

2 + ‖R∗‖2
2

)
.

On the other hand, we have( sc

n

)sc

(σp,n,β)2 =
(

pn − 2

2pn

)sc
(

2

pn

) 1
p (‖Q∗‖2

2 + ‖R∗‖2
2

)
.

Combining the above two equalities and noting that sc = n
2 − 1

p
lead to identity (3.7).

Furthermore, using σp,n,β = (
2

pn

) 1
2p

√
‖Q∗‖2

2 + ‖R∗‖2
2, we obtain

V[Q,R] = (‖∇Q‖2
2 + ‖∇R‖2

2

) sc
2
(‖Q‖2

2 + ‖R‖2
2

) 1−sc
2

= λsc− n
2

√
‖Q∗‖2

2 + ‖R∗‖2
2

= λ
− 1

p

√
‖Q∗‖2

2 + ‖R∗‖2
2 ≡ σp,n,β .

Using lemma 1 and (3.4) yields

Cn,p,β = p + 1(‖Q∗‖2
2 + ‖R∗‖2

2

)p

= p + 1

(V2p[Q∗, R∗])p
.

Using the fact that Q(x) = Q∗(λx), R(x) = R∗(λx) and λ =
√

pn

2 derives (3.9). �

4. Invariant evolution flows

In this section, we shall give the invariant flows generated by the Cauchy problem (1.1) and
(1.2).

We give the definition of two sets Kg and Kb.

Definition 3.

Kg := {(φ,ψ) ∈ H 1(Rn) × H 1(Rn) : V[φ,ψ] < V[Q,R],∧[φ,ψ] < ∧[Q,R]},
Kb := {(φ,ψ) ∈ H 1(Rn) × H 1(Rn) : V[φ,ψ] > V[Q,R],∧[φ,ψ] < ∧[Q,R]}.
Theorem 1. Assume 2

n
< p < An. Then Kg and Kb are invariant under the flow generated

by the Cauchy problem (1.1) and (1.2). More precisely, if (φ0, ψ0) ∈ Kg(Kb), then the
corresponding solution (φ(t), ψ(t)) satisfies (φ(t), ψ(t)) ∈ Kg(Kb).

Proof. Let (φ0, ψ0) ∈ Kg and (φ(t), ψ(t)) be the solution of the system (1.1) with the initial
datum (φ0, ψ0). By the conservations of mass (1.3) and energy (1.4), one has

∧ [φ(t), ψ(t)] = ∧[φ0, ψ0] < ∧[Q,R]. (4.1)

To check that (φ(t), ψ(t)) ∈ Kg , we only need to prove

V[φ(t), ψ(t)] < V[Q,R], t ∈ [0, T ). (4.2)

6
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If (4.2) is not true, because of V[φ0, ψ0] < V[Q,R], there would exist, by continuity,
t1 ∈ [0, T ) such that

V(φ(t1), ψ(t1)) = V[Q,R], t ∈ [0, T ). (4.3)

However, it follows from proposition 1 and lemma 1 that

∧ 1
sc [φ(t1), ψ(t1)] = E[φ(t1), ψ(t1)]M

1−sc
sc [φ(t1), ψ(t1)]

= 1

2

(‖∇φ(t1)‖2
2 + ‖∇ψ(t1)‖2

2

)
M

1−sc
sc [φ(t1), ψ(t1)]

− 1

2p + 2

(‖φ(t1)‖2p+2
2p+2 + 2β‖φ(t1)ψ(t1)‖p+1

p+1 + ‖ψ(t1)‖2p+2
2p+2

)
× M

1−sc
sc [φ(t1), ψ(t1)]

� 1

2

(‖∇φ(t1)‖2
2 + ‖∇ψ(t1)‖2

2

)
M

1−sc
sc [φ(t1), ψ(t1)]

− Cn,p,β

2p + 2
(M[φ(t1), ψ(t1)])

p+1− np

2
(‖∇φ‖2

2 + ‖∇ψ(t1)‖2
2

) np

2

× M
1−sc
sc [φ(t1), ψ(t1)]

= 1

2
V

2
sc [φ(t1), ψ(t1)] − Cn,p,β

2p + 2
V2(p+ 1

sc
)[φ(t1), ψ(t1)]. (4.4)

Substituting (3.9) and (4.3) into (4.4) yields

∧ 1
sc [φ(t1), ψ(t1)] � 1

2
V

2
sc [Q,R] − Cn,p,β

2p + 2
V2(p+ 1

sc
)[Q,R]

= 1

2
V

2
sc [Q,R] − 1

2p + 2

p + 1

(
np

2 )V2p[Q,R]
V2

(
p+ 1

sc

)
[Q,R]

= np − 2

2np
V

2
sc [Q,R]

= sc

n
σ

2
sc

n,p,β . (4.5)

Combining (3.7) and (4.5), we get

∧[φ(t1), ψ(t1)] �
( sc

n

)sc

σ 2
n,p,β = ∧[Q,R].

This violates ∧[φ(t1), ψ(t1)] = ∧[φ0, ψ0] < ∧[Q,R]. Thus, inequality (4.2) is true. Hence,
Kg is invariant under the flow generated by the Cauchy problem (1.1) and (1.2).

By the same argument as above, we can show that Kb is invariant under the flow generated
by the Cauchy problem (1.1) and (1.2). This completes the proof of theorem 1. �

5. Blow-up threshold

To derive the results for the blow-up phenomena, we need to use the following variance V (t)

and two lemmas on the variance identity and uncertainty inequality respectively due to Fanelli
and Montefusco [7] and Weinstein [19]:

V (t) =
∫

Rn

|x|2(|φ|2 + |ψ |2) dx.

7
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Lemma 3 (Fanelli and Montefusco [7]). Let (φ,ψ) be a solution of the system (1.1); then the
variance satisfies the variance identities

V ′(t) = 4�
∫

Rn

[(x · ∇φ)φ̄ + (x · ∇ψ)ψ̄] dx,

V ′′(t) = 8
∫

Rn

(|∇φ|2 + |∇ψ |2) dx − 4np

p + 1

∫
Rn

(|φ|2p+2 + 2β|φ|p+1|ψ |p+1 + |ψ |2p+2) dx.

Lemma 4 (Weinstein [19]). For any u ∈ H 1, we have the uncertainty inequality

‖u‖2
2 � 2

n
‖|x|u‖2‖∇u‖2.

The principal results are as follows.

Theorem 2. Let 2
n

� p < An and (|x|φ0, |x|ψ0) ∈ L2(Rn) × L2(Rn). Assume that

∧ [φ0, ψ0] < ∧[Q,R] ≡
( sc

n

)sc

(σp,n,β)2; (5.1)

then the following two conclusions are valid.

(1) If V[φ0, ψ0] < V[Q,R], then the solution exists globally in time.
(2) If V[φ0, ψ0] > V[Q,R], then the solution blows up in finite time.

Remark 1. The above theorem gives a sharp threshold for the initial data which separates
blow-up and global existence of a solution.

Proof.
(i) Let ∧[φ0, ψ0] < ∧[Q,R] ≡ (

sc

n

)
(σp,n,β)2 and V[φ(t), ψ(t)] < V[Q,R], that is

(φ0, ψ0) ∈ Kg . Let (φ(t), ψ(t)) be the corresponding solution of the Cauchy problem
(1.1) and (1.2). It follows from theorem 1 that (φ(t), ψ(t)) ∈ Kg . Hence,

V[φ(t), ψ(t)] := (‖∇φ‖2
2 + ‖∇ψ‖2

2

) sc
2
(‖φ‖2

2 + ‖ψ‖2
2

) 1−sc
2 < σp,n,β .

Using the above inequality and the mass conservation (1.3), we obtain that (φ(t), ψ(t))

is bounded in H 1(Rn) × H 1(Rn). Therefore, by proposition 1, we know that the solution
(φ(t), ψ(t)) exists globally.

(ii) Suppose initially ∧[φ0, ψ0] < ∧[Q,R] ≡ (
sc

n

)
(σp,n,β)2 and V[φ0, ψ0] > V[Q,R], that

is (φ0, ψ0) ∈ Kb. Let (φ(t), ψ(t)) be the corresponding solution of the Cauchy problem
(1.1) and (1.2). It follows from theorem 1 that (φ(t), ψ(t)) ∈ Kb, which implies

∧[φ(t), ψ(t)] < ∧[Q,R] ≡
( sc

n

)
(σp,n,β)2

and

V[φ(t), ψ(t)] > V[Q,R].

Therefore, it follows from proposition 3 and the energy conservation (1.4) that

V ′′(t)M
1−sc
sc [φ(t), ψ(t)] =

(
8
(‖∇φ‖2

2 + ‖∇ψ‖2
2

)
− 4np

p + 1

(‖φ‖2p+2
2p+2 + 2β‖φψ‖p+1

p+1 + ‖ψ‖2p+2
2p+2

))
M

1−sc
sc [φ,ψ]

= (
8npE(φ,ψ) − 4(np − 2)

(‖∇φ‖2
2 + ‖∇ψ‖2

2

))
M

1−sc
sc [φ,ψ]

= 8np ∧ 1
sc [φ0, ψ0] − 4(np − 2)V

2
sc [φ,ψ]

< 8np ∧ 1
sc [φ0, ψ0] − 4(np − 2)V

2
sc [Q,R]

= 8np ∧ 1
sc [φ0, ψ0] − 4(np − 2)σ

2
sc

n,p,β .

8
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Noting (3.7), the above inequality implies that

V ′′(t)M
1−sc
sc [φ(t), ψ(t)] < 8np

(∧ 1
sc [φ0, ψ0] − ∧ 1

sc [Q,R]
)
.

Thus, we get d2

dt2

∫
Rn |x|2(|φ|2 + |ψ |2) dx < −δ < 0. Here δ is the positive constant.

Therefore, there exists a finite T < ∞ such that limt→T V (t) = 0, which means that

lim
t→T

∫
Rn

|x|2|φ|2 dx → 0 and lim
t→T

∫
Rn

|x|2|ψ |2 dx → 0.

Using lemma 3 and the mass identity (1.3), we get

lim
t→T

∫
Rn

|∇φ|2 dx → ∞ and lim
t→T

∫
Rn

|∇ψ |2 dx → ∞.

�

6. Concluding remarks

Remark 2. In theorem 2, if p = 2
n

, we have sc = n
2 − 1

p
= 0. Thus, Kg = {

(φ0, ψ0) :

‖φ0‖2
2 + ‖ψ0‖2

2 < ‖Q‖2
2 + ‖R‖2

2

}
and Kb = ∅. In this case, our theorem 2 coincides with the

main result in [7]. Namely, our theorem 2 includes the main result presented in [7].

Remark 3. In the case of p = 1 and n = 3, the system (1.1) is physically relevant. In this
case, theorem 2 can be stated as follows.

Suppose the initial data (φ0, ψ0) satisfy M[φ0, ψ0]E[φ0, ψ0] < M[Q,R]E[Q,R].

• If
(‖φ0‖2

2 + ‖ψ0‖2
2

)(‖∇φ0‖2
2 + ‖∇ψ0‖2

2

)
<

(‖Q‖2
2 + ‖R‖2

2

)(‖∇Q‖2
2 + ‖∇R‖2

2

)
, then the

solution (φ(t), ψ(t)) globally exists.
• If

(‖φ0‖2
2 + ‖ψ0‖2

2

)(‖∇φ0‖2
2 + ‖∇ψ0‖2

2

)
>

(‖Q‖2
2 + ‖R‖2

2

)(‖∇Q‖2
2 + ‖∇R‖2

2

)
, then the

solution (φ(t), ψ(t)) blows up in finite time.

If the energy is negative, then via the Gagliardo–Nirenberg inequality (3.6) we
automatically have

(‖φ0‖2
2 +‖ψ0‖2

2

)(‖∇φ0‖2
2 +‖∇ψ0‖2

2

)
>

(‖Q‖2
2 +‖R‖2

2

)(‖∇Q‖2
2 +‖∇R‖2

2

)
and the second of the above two cases is valid.

To interpret the physical implication of the above results, we note from (1.3) and
(1.4) that M(t) = M(φ(t), ψ(t)) := ‖φ0‖2

2 + ‖ψ0‖2
2 is the mass of the system, and

E(t) = E(φ(t), ψ(t)) = T (t) + U(t) denotes the total energy of the system, where
T (t) = T (φ(t), ψ(t)) := 1

2

(‖∇φ(t)‖2
2 + ‖∇ψ(t)‖2

2

)
corresponds to the kinetic energy

of the system while U(t) = U(φ(t), ψ(t)) := − 1
2p+2

(‖φ‖2p+2
2p+2 + 2β‖φψ‖p+1

p+1 + ‖ψ‖2p+2
2p+2

)
corresponds to the potential energy of the system. Thus, in physics terms, our results show
that if M(φ0, ψ0)E(φ0, ψ0) < M(Q,R)E(Q,R), the solution (φ(t), ψ(t)) blows up in finite
time when M(φ0, ψ0)T (φ0, ψ0) > M(Q,R)T (Q,R), and the solution exists globally when
M(φ0, ψ0)T (φ0, ψ0) < M(Q,R)T (Q,R). This result suggests that the product of the mass
and the kinetic energy plays an important role in the evolution of the system.

Remark 4. The conclusion in theorem 2 can be expressed equivalently as follows.
Assume 2

n
� p < An and

0 < E(φ0, ψ0) <
sc

n
M

1−sc
sc σ

2
sc

n,p,β .

Then one has the following results.

(1) If ‖∇φ0‖2
2 + ‖∇ψ0‖2

2 <
( ‖Q‖2

2+‖R‖2
2

‖φ0‖2
2+‖ψ0‖2

2

) 1−sc
sc

(‖∇Q‖2
2 + ‖∇R‖2

2

)
, then (φ(t), ψ(t)) globally

exists in H 1(Rn) × H 1(Rn);

9
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(2) If ‖∇φ0‖2
2 + ‖∇ψ0‖2

2 >
( ‖Q‖2

2+‖R‖2
2

‖φ0‖2
2+‖ψ0‖2

2

) 1−sc
sc

(‖∇Q‖2
2 + ‖∇R‖2

2

)
, then (φ(t), ψ(t)) blows up

in a finite time.

Remark 5. From [7] and the conclusion in theorem 2, we know that

• If E(φ0, ψ0) < 0, (φ(t), ψ(t)) blows up in finite time.

• If 0 < E(φ0, ψ0) < sc

n
M

1−sc
sc σ

2
sc

n,p,β and ‖∇φ0‖2
2 + ‖∇ψ0‖2

2 <
( ‖Q‖2

2+‖R‖2
2

‖φ0‖2
2+‖ψ0‖2

2

) 1−sc
sc

(‖∇Q‖2
2 +

‖∇R‖2
2

)
, then (φ(t), ψ(t)) globally exists in H 1(Rn) × H 1(Rn).

• If 0 < E(φ0, ψ0) < sc

n
M

1−sc
sc σ

2
sc

n,p,β and ‖∇φ0‖2
2 + ‖∇ψ0‖2

2 >
( ‖Q‖2

2+‖R‖2
2

‖φ0‖2
2+‖ψ0‖2

2

) 1−sc
sc

(‖∇Q‖2
2 +

‖∇R‖2
2

)
, then (φ(t), ψ(t)) blows up in a finite time.

Remark 6. Parts (i) and (ii) in proposition 2 imply that if β < 2p −1, then any ground state of
the elliptic system (1.5) is a scalar function, namely one of the components of the ground-state
solution is zero. So we can assume, without loss of generality, that the ground-state solution
is (z, 0), where z ∈ H 1 is the unique ground-state solution (see [11, 18]):

�z − (2 − n)p − 2

2
z + |z|2pz = 0.

This implies that the constant σn,p,β = σn,p depends only on n and p for any β < 2p − 1.

In the case of β > 2p − 1, σn,p,β = σn,p depends on n, p and β. But we can estimate it
using a suitable test pair. Let ẑ be the unique positive ground-state solution of

�ẑ − (2 − n)p − 2

2
ẑ + (1 + β)|ẑ|2pẑ = 0.

It is easy to see that the pair (ẑ, ẑ) is a positive solution of (1.5) for any β, and the following
inequality holds:

σn,p,β = V[Q,R] = (‖∇Q‖2
2 + ‖∇R‖2

2

) sc
2
(‖Q‖2

2 + ‖R‖2
2

) 1−sc
2

�
(‖∇ ẑ‖2

2 + ‖∇ ẑ‖2
2

) sc
2
(‖ẑ‖2

2 + ‖ẑ‖2
2

) 1−sc
2

= 2‖∇ ẑ‖sc

2 ‖ẑ‖1−sc

2 .
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